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The onset of meandering in a barotropic jet
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This study explores the dynamics of an unstable jet of two-dimensional, incompressible
fluid on the beta-plane. In the inviscid limit, standard weakly nonlinear theory fails
to give a low-order description of this problem, partly because the simple shape
of the unstable normal mode is insufficient to capture the structure of the forming
pattern. That pattern takes the form of ‘cat’s eyes’ in the vorticity distribution which
develop inside the modal critical layers (slender regions to either side of the jet’s
axis surrounding the levels where the modal wave speed matches the mean flow).
Asymptotic expansions furnish a reduced model which is a version of what is known
as the single-wave model in plasma physics. The reduced model predicts that the
amplitude of the unstable mode saturates at a relatively low level and is not steady.
Rather, the amplitude evolves aperiodically about the saturation level, a result with
implications for Lagrangian transport theories. The aperiodic amplitude ‘bounces’
are intimately connected with sporadic deformations of the vortices within the cat’s
eyes. The theory is compared with numerical simulations of the original governing
equations. Slightly asymmetrical jets are also studied. In this case the neutral modes
along the stability boundary become singular; an extension of the weakly nonlinear
theory is presented for these modes.

1. Introduction
The dynamics of two-dimensional jets plays an important role in many geophysical

and astrophysical flows, ranging from the meander of the Earth’s gulf stream to
the formation of vortical structures in Jupiter’s atmosphere. Two-dimensional jets
have also been explored in the laboratory, especially in experiments involving flows
in circular or annular geometry (Dolzhanskii, Krymov & Manin 1991; Solomon,
Holloway & Swinney 1993; Früh & Read 1999; van de Konijnenberg et al. 1999).
Key points of interest are how vortices are generated through intrinsic instability, and
how mixing proceeds in the unsteady fluid motions that result.

In the present work, we explore meanders of jets in two-dimensional, incompressible
fluids on the beta-plane. We focus upon conditions in the vicinity of the onset
of instability and in the inviscid limit. These restrictions allow us to investigate
analytically the details of the pattern formation problem, and to complement the
laboratory experiments and related numerical simulations (Flierl, Malanotte-Rizzoli
& Zabusky 1987; Kwon & Mak 1988; van de Konijnenberg et al. 1999) which operate
in the more strongly viscous and unstable regimes. However, we emphasize that we
are mainly concerned with the mathematical details of the weakly viscous problem,
rather than the issues raised by laboratory and numerical experiments.

To delineate the problem further, we consider the Bickley jet (with a sech2y velocity
profile); the stability boundaries of this flow are partly known analytically and it is
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a popular model of a wake and in the experiments with rotating annuli. Our goal is
a weakly nonlinear theory for the meanders of the jet. However, this theory cannot
be derived as straightforwardly as in other pattern formation problems because we
operate close to the inviscid limit. In such conditions, theory of linear shear flow
dynamics is plagued by singularities that occur along lines for which the mean
flow matches the speed of a neutral wave; these are usually termed ‘critical level’
singularities in fluid mechanics. For jets, there are two such levels, lying to either side
of the jet axis.

Despite this problematic feature of linear theory, the instability of the flow is
described by a smooth discrete eigenmode which has no critical-level singularities.
Thus the stability properties of the flow can be detected by conventional normal-
mode techniques. Unfortunately, one cannot continue to ignore critical-level problems
when one advances to the weakly nonlinear analysis of the unstable modes close
to onset.† This theory fails completely because critical-level singularities enter at all
higher orders of the asymptotic expansion and become progressively worse as one
proceeds along the asymptotic sequence. The divergences signify the breakdown of the
conventional solution in slender regions surrounding the singular levels. Inside these
‘critical layers’, a different solution is needed; specifically, one that varies on a much
finer spatial scale. Physically, what happens is that the evolving unstable disturbance
generates a pattern with sharp gradients in the critical layers. This structure is not
captured by the simple geometry of the unstable eigenmode, and takes the form of a
chain of vortices (a cat’s eye pattern). Thus, to counter the breakdown of the regular
expansion, one finds ‘inner’ solutions inside the critical layers and matches these to
the usual weakly nonlinear solution, which remains valid outside the critical layers
(the ‘outer region’). In other words, we exploit a matched asymptotic expansion.

The asymptotic analysis follows a similar route to that taken for unstable shear
layers (Churilov & Shukhman 1987; Goldstein & Leib 1988; Goldstein & Hultgren
1998), compressible shear instability (Balmforth 1999), disturbed vortices (Balmforth,
Llewellyn Smith & Young 2000) and electrostatic plasma instability (del Castillo-
Negrete 1998). These other examples are all characterized by equilibrium states for
which the profile of the background fluid motion is monotonic, and consequently,
there is only a single critical layer. By contrast, for jet profiles, the modes have two
critical levels, suggesting a richer behaviour. As we find for the particular problem
considered here, however, there is no essential difference for profiles such as the
Bickley jet which are symmetrical under reflection about the jet axis; the outcome of
the asymptotic analysis is the same as for the monotonic cases.‡ This highlights a key
fact about the particular bifurcation to instability that we explore: the asymptotic
analysis furnishes a reduced model of a ‘universal’ form. In fact, the system is a version
of the ‘single-wave model’ used in plasma physics (O’Neil, Winfrey & Malmberg 1971;
Tennyson, Meiss & Morrison 1994). One of our main aims here is to give the first
systematic exploration of this universal system.

† From the mathematical perspective, the singularities in the linear eigenvalue problem reflect
a continuous spectrum of singular, neutral modes with critical levels; at onset, the unstable mode
is embedded within this continuous spectrum, which is why centre-manifold theory fails in this
instance.
‡ Leib & Goldstein (1989) have also explored the Bickley jet, focusing on a different, modal

interaction problem. Their analysis explores dynamics that is indeed enriched by the multiple critical
levels. Our goals here are different to Leib & Goldstein’s, but our asymptotic analysis has many
common points. The main difference is that we study the case of a single mode bifurcating from
the continuous spectrum, whereas Leib & Goldstein consider two bifurcating modes.
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This article is organized as follows. In § 2 we formulate the governing equations of
the problem. In § 3, we provide a detailed discussion of the linear stability problem.
Section 4 is an overview of the asymptotic expansion, the details of which are given
in an Appendix. Section 5 describes our exploration of the reduced model. Finally,
the special reflectional symmetry of the Bickley jet allows a special class of regular
neutral modes in the linear stability problem which are not a property of generic
jet profiles (see § 3). To allow our analysis to be more general, we explore this issue
further and introduce a slight asymmetry into the Bickley jet profile in § 6.

2. Formulation
Our goal in this article is to explore the dynamics of unstable jets in two-

dimensional, incompressible fluid on the beta-plane. We are further interested in
situations in which there is a basic equilibrium shear flow in the x-direction, U(y);
we focus on either the Bickley jet or slightly distorted variants of this flow that lack
the reflectional symmetry about the jet axis. For viscous flows, these equilibria must
be maintained by an external body force, which we assume given.

The dynamics of the flow is described by the vorticity, ω̃(x, y, t), and streamfunction,
ψ̃(x, y, t). We separate the equilibrium from any evolving perturbations by defining

ψ̃(x, y, t) = −
∫ y

U(y′)dy′ + ψ(x, y, t), ω̃(x, y, t) = −U ′(y) + ω(x, y, t). (2.1)

Then, the governing equations for the perturbations take the dimensionless form

ωt +Uωx + J(ψ,ω) = ν∇2ω + (U ′ − β)ψx, (2.2)

ψyy + ψxx = ω, (2.3)

where J(ψ,ω) = ψxωy−ψyωx, ν is a viscosity parameter (an inverse Reynolds number)
and β measures the beta-effect (the background, planetary vorticity gradient).†

We assume periodic boundary conditions in x. In the cross-stream direction, we
consider a variety of different configurations, ranging from infinite (in y) shear flows
to bounded jets with fixed or periodic boundaries. In these cases, the streamfunction
is required to be bounded, vanish or be periodic as we approach the boundaries. For
viscous flows, further conditions are required on the velocity field. However, we add
only weak viscosity in our analysis and the effects of viscosity become localized to
the mode critical layers; the boundary conditions are effectively decoupled from these
layers and we need not explicitly specify the precise conditions. In the nonlinear,
viscous numerical computations, we use periodic boundary conditions (the scheme
we use is described further in Appendix A).

3. Inviscid linear theory of the Bickley jet
Several previous studies (Lipps 1962; Drazin, Beaumont & Coaker 1982; Maslowe

1991) have presented inviscid linear stability calculations of the Bickley jet. In this
section, we report computations that are more detailed than these previous works, and
they largely unify them. The main goal is to summarize the stability characteristics

† β is not precisely the usual beta-parameter of geophysical fluid dynamics, since it is defined
with reference to the basic jet profile. As a result, our jet always has one direction, but the Coriolis
force changes sign with β; it is more customary in geophysical fluid dynamics to have the beta
parameter positive and the jet to reverse direction.
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of the basic flow in preparation for the weakly nonlinear theory. For periodic jets (in
both x and y) we have verified that weak viscosity does not qualitatively affect the
inviscid instability.

We pursue inviscid linear stability theory by setting ν = 0, introducing the decom-
position

ψ(x, y, t) = ψ̂(y)eik(x−ct) + c.c., (3.1)

and then linearizing in the amplitude, ψ̂(y):

(U − c)(ψ̂′′ − k2ψ̂) = (U ′′ − β)ψ̂. (3.2)

Here, k is the streamwise wavenumber and the wave speed, c = cr+ici, is the eigenvalue
of the stability problem. In unbounded cross-stream domains, the Rayleigh–Kuo
equation (3.2) is solved subject to ψ̂ remaining finite as y → ±∞. Alternatively, in
bounded domains, −L 6 y 6 L, we impose ψ̂(−L) = ψ̂(L) = 0 to simulate distant
walls, or ψ̂(−L) = ψ̂(L) and ψ̂y(−L) = ψ̂y(L) to compare with numerical simulations.

Despite its apparently simple appearance, the eigenvalue problem in (3.2) is actually
rather complicated due to the singularities that occur when c is real at the points
for which U(y) = c. These locations are the critical levels of neutral waves, and are
symptomatic of the continuous spectrum. In addition, when β < 0 there can also be
a set of neutral modes with c = cr > 1. These smooth eigenmodes are Rossby waves
and have discrete values of cr . There is only a finite number of these modes in a
bounded channel if β is finite, and they disappear as β → 0 (Drazin et al. 1982).

Neither the continuous spectrum nor the Rossby waves can directly destabilize the
flow. Instead, jet instability arises from another class of smooth, discrete eigensolutions
with complex values of c. Because complex solutions occur in conjugate pairs, the
presence of a complex mode signifies instability. Standard manipulations on the
Rayleigh–Kuo equation show that these complex modes only exist if β − U ′′(y)
changes sign somewhere in the domain (Kuo’s generalization of Rayleigh’s Theorem).
This condition requires −2 < β < 2/3 for the Bickley jet. Outside this range of β,
only real modes can exist (smooth Rossby waves or singular continuum modes).

When the flow is unstable, complex modes exist over certain regions of the (β, k)
parameter plane. The edges of these regions are the stability boundaries; we denote
their loci by β = β∗(k). On approaching the stability boundaries, the complex modes
smoothly limit to neutral waves with ci → 0. The limiting neutral modes are either
Rossby waves with cr > 1 (Drazin et al. 1982), or ‘inflectional’ modes, for which
c = U(y) at the same locations where β = U ′′(y) (that is, the critical levels line up
with the inflection points of the mean ‘profile’, U−βy2/2). With that coincidence, there
is no singularity in the eigenvalue equation and the solutions are smooth. Because the
inflectional modes have critical levels, they may also be considered to be part of the
continuous spectrum. In particular, they are the embedded neutral modes that occur
when the complex pairs merge with the continuous spectrum.

For the Bickley jet, the inflectional modes can be found explicitly: we have
U(y) = sech2y and U ′′ ≡ 2U(2−3U), which imply that β = 2c(2− 3c). The Rayleigh–
Kuo equation then reduces to

ψ̂′′ − k2ψ̂ = (4− 6c− 6 sech2y)ψ̂. (3.3)

With the transformation τ = tanh y,

(1− τ2)ψ̂ττ − 2τψ̂τ + 6ψ̂ −
(
k2 + 4− 6c

1− τ2

)
ψ̂ = 0. (3.4)
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Figure 1. Location of neutral waves on the (β, k)-plane for (a) even modes and (b) odd modes. In
(a), the curves show (i) the regular mode with β = k2(4 − k2)/6, (ii) Howard & Drazin’s singular
mode with β = −k2(1− k2/9), and (iii) the regular mode with β = −k2(k2 + 4)/2. In (b), the curves
show (i) the regular mode with β = (1−k2)(3+k2)/6, and (ii) Howard & Drazin’s singular mode. In
both cases, the shading shows the unstable region for a bounded flow with L = 10, and the dashed
curves indicate the inflectional modes with β = 2c(2− 3c), k2 = 6c− 4 + m2 and m(L)2 < 0.

The solution is expressed in terms of associated Legendre functions, aPm
n (τ) + bQmn (τ),

where a and b are constants and

n(n+ 1) = 6, m2 = k2 + 4− 6c. (3.5)

The imposition of the boundary conditions leads to an equation for m(L). In the
infinite domain, the only possible solutions have m = 0, 1 or 2, and b = 0:

ψ̂ = P 0
2 (τ) ≡ (3 tanh2 y − 1)/2, c = (k2 + 4)/6, β = −k2(k2 + 4)/2 (m = 0),

ψ̂ = P 1
2 (τ) ≡ tanh y sech y, c = (k2 + 3)/6, β = (1− k2)(k2 + 3)/6 (m = 1),

ψ̂ = P 2
2 (τ) ≡ sech2y, c = k2/6, β = k2(4− k2)/6 (m = 2)


(3.6)

(with a = 1). These solutions are all known (Lipps 1962; Maslowe 1991) their locations
on the parameter plane are illustrated in figure 1.

For finite domains, provided L is sufficiently large, there are analogues of the m = 1
and 2 modes. These odd and even modes delineate parts of the stability boundaries
of varicose and sinuous instabilities (Lipps 1962; Howard & Drazin 1964; Maslowe
1991). This is illustrated in figure 1, which displays the regions of instability of a
bounded shear flow, determined numerically. The m = 1 and 2 inflectional modes
bound the unstable ranges from above; the remaining parts of the stability boundaries
are more complicated. There are also further inflectional modes with m2 < 0 that are
again drawn in the figure.

Also drawn in figure 1 is a singular neutral mode found by Howard & Drazin
(1964) with

ψ̂ =

∣∣∣∣ sinh y

cosh2 y

∣∣∣∣k2/3

tanh2 y, c = 1, β = −k2

(
1− k2

9

)
. (3.7)
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Figure 2. Contour plots of maximal ci on the (β, k)-plane for a bounded jet. (a, c) The maximum
values of ci for the even, sinuous modes (corresponding to perturbations that describe meanders),
and (b, d) the same for the odd, varicose modes. (a, b) L = 5; (c, d) L = 10 (the unstable regions in
this case are also shown in figure 1). Contour levels are spaced by 0.01.
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Figure 3. Contour plots of maximal ci on the (β, k)-plane for a jet in a periodic domain with
L = 5. (a) The maximum values of ci for the sinuous modes, and (b) the same for the varicose
modes. Contour levels are spaced by 0.01. Except in the regions with k � 1, the contours are
essentially unchanged when we add weak viscosity, which illustrates how the inviscid instability is
not qualitatively affected by viscosity in this parameter range.

Though it is not smooth, this mode appears to have some physical significance: in
the infinite domain, Maslowe observed that the mode delimits a piece of the stability
boundary for the odd modes. This is also suggested in figure 1(b).

Eigenvalues of complex modes, computed numerically, are shown in figures 2 and
3. Figure 2 compares the growth rates of instabilities for bounded flows in domains
of different size. Results for a periodic domain are shown in figure 3. The primary
instability is little different in the three cases (compare the panels for positive β,
or for larger k). However, for smaller wavenumber and negative β (the lower left
portion of the figures), there are significant differences. Here, the growth rates form
a pattern of ‘tongues’: the larger the domain, the more tongues. These arise because,
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away from the core of the jet, U → 0 and so ψ′′ ≈ (k2 + β/c)ψ. Thus, if |ci| � cr and
k2 < −β/cr , the modes are spatially oscillating, leading to a pronounced dependence
on L and the type of boundary conditions. For k2 > −β/cr , on the other hand,
the eigenfunctions decay exponentially away from the jet’s core, which implies that
the boundary conditions are unimportant here. Notably, this means that the upper
stability boundary (for which k2 > −β and cr < 1) is insensitive to the boundary
conditions.

For both the even and odd modes, the upper pieces of each tongue of the stability
boundary can be identified with an inflectional mode; see figure 1. The even modes
lying along the lower boundary of each tongue have cr > 1 and consequently are dis-
crete Rossby waves (see Drazin et al. 1982 and Maslowe 1991). The lower boundaries
of the tongues of the odd modes, on the other hand, appear to be characterized by
neutral modes with cr = 1 and are therefore relatives of Drazin & Howard’s singular
mode.

4. Scalings and the single-wave model
We now consider weakly nonlinear theory for the unstable jet. To do this, we must

open an asymptotic expansion about a neutrally stable equilibrium flow. However, as
found in the last section, the jet appears to be unstable for any value of β in the range
[−2, 2/3]. Consequently, unless we focus on the marginally stable flows with β = 2/3
and −2, our only option for selecting a general basic state is to take a domain size
in x for which the minimum wavenumber, km, lies on the upper stability boundary of
the sinuous mode; that is, k = km. Thus, the m = 2 inflectional mode has the longest
wavelength in the domain we consider, and is of special importance in the present
study.

With this choice, we open the expansion with a neutrally stable Bickley jet in an
infinite domain in y (as mentioned earlier, there is no essential difference for the
inflectional modes if the jet is infinite, bounded or periodic in y), and set

U = sech2y − c∗, (4.1)

where 2c∗(2 − 3c∗) = β∗, and β∗(k) and c∗(k) denote the position of the stability
boundary for the given minimum wavenumber, k. The subtraction of the constant c∗
amounts to a Galilean transformation into a frame in which the neutral mode of the
jet is stationary; the flow evolves about this state on a much slower time scale. We
also have c∗ = sech2y∗, where y = ±y∗ denote the critical levels of the inflectional
mode.

To capture the dynamics, we set

∂t → ε∂T , β = β∗ + εβ1, ν = ε3ν3, (4.2)

ψ = ε2ψ2 + ε3ψ3 + · · · , ω = ε2ω2 + ε3ω3 + · · · , (4.3)

where ε is a small parameter that we use to order the asymptotic expansion. The
scaling of ν ensures that viscous effects first appear at the same order as nonlinearity
and instability. Otherwise, the particular asymptotic scheme is the same as the ‘trap-
ping scaling’ of plasma physics (e.g. Crawford 1995) and is standard in critical-layer
theory.

We begin the asymptotic analysis with a regular expansion using the trapping
scalings. At leading order, this furnishes the neutral mode with an undetermined
amplitude, A(T ). The goal of the expansion, as in all weakly nonlinear theories,
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is to proceed to higher order and enforce solvability conditions which provide an
evolution equation for A(T ). In the current problem this recipe fails at first order
because singularities appear at the critical levels that prohibit the imposition of the
solvability condition. As mentioned in the introduction, the cure for the singularities
is to recognize that there are slender regions surrounding the critical levels in which
the vorticity varies on a finer spatial scale (of order ε), and then proceed by finding
another solution in these inner regions, or critical layers. The inner solutions cannot,
in fact, be given in closed form; the vorticity equation remains nonlinear in the critical
layers and must be solved fully. However, the inclusion of the inner solution fixes the
solvability condition, yielding the desired evolution equation for A(T ). The details
of the outer and inner expansions, the matching, and a final scaling of the resulting
system are given in Appendix B. We summarize the results by quoting the final
equations: because there are two critical layers, we have two inner vorticity variables,
ζ±(x, Y , T ), defined in terms of an inner coordinate Y (measuring the fine scale on
which ζ± vary), where the ± refers to the critical layer at y = ±y∗, respectively. These
variables are coupled to the mode amplitude, which together satisfy the evolution
equations

∂T ζ± + Y ∂xζ± + ϕx∂Y ζ± − λ∂2
Y ζ± = −γϕx − κϕT , ϕ(x, T ) = A(T )e−ix + c.c., (4.4)

iAT =
1

4π

∫ ∞
−∞

∫ 2π

0

e−ix(ζ+ + ζ−) dxdY ≡ 1
2
〈e−ix(ζ+ + ζ−)〉, (4.5)

where λ, γ and κ are parameters (λ ∝ ν3 is a new viscosity, γ is a scaled version
of the control parameter β1, and κ is determined by the background flow profile,
κ ∝ U ′′′(y∗)/U ′(y∗)2). ϕ denotes the leading-order streamfunction which is the same
inside each critical layer, and k has now been scaled out. The right-hand side of the
first relation in (4.4) represents the advection of the background vorticity field inside
the critical layers by the mode. The equations are solved subject to the boundary
conditions, ζ± → (κϕTx − γϕ)/Y as |Y | → ∞, and the integrals over Y in (4.5) must
be interpreted in terms of principal values at their limits.

Because of the form of (4.4), it is convenient to define the even and odd vorticity
components, ζe = (ζ+ + ζ−)/2 and ζo = (ζ+ − ζ−)/2. The odd component satisfies

∂T ζo + Y ∂xζo + ϕx∂Y ζo − λ∂2
Y ζo = 0. (4.6)

Thus, if ζo is initially zero, then it remains so throughout the evolution. Even if this
component is not initially zero, it does not couple to the mode amplitude. Hence we
ignore this component hereafter, and set ζ = ζe, which leaves the system

ζT + Y ζx + ϕxζY − λζY Y = −γϕx − κϕT , iAT = 〈e−ixζ〉, (4.7)

ϕ = Ae−ix + c.c., ζ → (κϕTx − γϕ)/Y as |Y | → ∞. (4.8)

These coupled equations are identical to those derived for a mode with a single critical
layer (Churilov & Shukhman 1987; Goldstein & Leib 1988; Goldstein & Hultgren
1998). Thus, although there are two critical layers, the dynamics is no richer. As we
see in § 6, this remains true even if the profile is made slightly asymmetrical.

5. Dynamics of the single-wave model
5.1. Properties of the model

The single-wave model arises in various shear flow problems (Churilov & Shukhman
1987, Balmforth 1999), for disturbed vortices (Balmforth et al. 2000), and in plasmas
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(del Castillo-Negrete 1998). This underscores the fact that this model describes a
particular kind of transition to instability (the bifurcation of a mode from a continuous
spectrum), yet there are relatively few systematic discussions of its solutions beyond
some asymptotic limits. In fact, we are aware of no solutions other than a handful
presented by Goldstein and collaborators (Goldstein & Leib 1988; Goldstein &
Hultgren 1998) for unstable modes, and Balmforth et al. (2000) for forced stable
modes, and some computations reported in plasma physics for a related, but different
model (O’Neil et al. 1971; Onishchenko et al. 1971; Tennyson et al. 1994). For this
reason, we dwell in some detail on the dynamics of the single-wave model.

We begin by mentioning some general properties of the model. First, there are three
parameters in the equations: γ, κ and λ. As indicated in Appendix B, we may take
|γ| = 1 (unless β1 = 0); as shown below, if γ = −1 (+1), the system is unstable (stable).
Only two positive parameters then remain (λ > 0 because the viscosity is positive,
and κ > 0 because changing the sign of this parameter amounts to a reflection of
the spatial coordinates). As described in Appendix C, if either of the two parameters
becomes large, the system can be asymptotically reduced to an ordinary differential
equation for the mode amplitude, A(T ). This dimensional reduction occurs because
the two limits are both characterized by significant dissipation.

Second, the model has a number of global conservation or balance laws:

d

dT
〈ζ〉 = 0,

d

dT
(|A|2 − 〈Y ζ〉) = 0,

d

dT
〈Ψζ − κ|A|2〉 = λ〈ζ〉, (5.1)

d

dT
(γ|A|2 + 1

2
〈ζ2〉) = −λ〈ζ2

Y 〉, (5.2)

where Ψ = Y 2/2 − ϕ is the total streamfunction. The integrals in these relations
all converge provided one performs the integral in x first. The first two relations
correspond to conservation of the mean critical-layer vorticity and momentum. The
second two relations are energy and enstrophy equations (for the energy relation,
the subtraction of κ|A|2 from Ψζ ensures that the integral converges, assuming that
ζ ∼ (κϕTx − γϕ)Y −1 + (κ|A|2 − κϕTT − γϕTx)Y −2). When λ = 0, there is also an
infinite number of Casimir invariants, 〈F(q)〉, given by any function, F(q), of the total
vorticity, q = ζ + κϕ+ γy − κy2/2.

Finally, we are interested in the nonlinear dynamics of unstable modes, rather than
how vorticity perturbations are rearranged within the critical layers. A suitable initial
condition is then

A(T = 0) = A0, ζ(x, Y , T = 0) = 0, (5.3)

for some small initial amplitude A0. In numerical computations, we take A0 = 10−3

and solve the equations using the operator-splitting scheme described in Appendix A.

5.2. Linear theory

5.2.1. Inviscid normal modes

The linear dynamics of the perturbed neutral mode can be discussed straightfor-
wardly within the framework of the single-wave model. First, consider inviscid normal
modes with dependence exp i(x− c1T ). Then,

ζ =
(κc1 − γ)ϕ
Y − c1

, (5.4)

c1 =

[
πκ− isgn(c1i)

1 + π2κ2

]
πγ. (5.5)
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The flow is therefore unstable when γ < 0.† When γ > 0, (5.5) is not consistent
and there is no normal mode; the flow is stable. The non-analyticity of the dis-
persion relation (the appearance of sgn(c1i)) reflects the presence of the continuous
spectrum.

5.2.2. Viscous modes

The viscous normal modes solve

λζY Y + i(Y − c1)ζ = i(κc1 − γ)ϕ. (5.6)

The solutions can be given in terms of Airy functions or via Fourier transforms (see
Balmforth 1998). Thence,

c1 =

(
πκ− i

1 + π2κ2

)
πγ, (5.7)

which is identical to the inviscid dispersion relation, save that sgn(c1i) no longer
appears. (Curiously, neither does the viscosity parameter, λ.)

5.2.3. The initial-value problem

The initial-value problem has solution,

A = A0e
ΓT , ζ =

iγA0

(πγ − πκY − iY )
(eΓT − e−iY T )eix + c.c.; (5.8)

Γ = πγ/(iπκ− 1) is the viscous normal-mode eigenvalue.
These results illustrate two important features of the linear problem. First, if the

system is unstable, the inviscid and viscous normal modes coincide with one another
and with an exponentially growing disturbance in the initial-value problem. Second, if
the system is stable, there are no inviscid eigenvalues, but there is a viscous mode and
a corresponding exponentially decaying disturbance in the initial-value problem. The
latter is a ‘Landau pole’ or a ‘quasi-mode’ (in the terminology of plasma physics), that
one can uncover by analytical continuation of the dispersion relation. It is somewhat
surprising that this quasi-mode corresponds to a viscous eigenvalue, but this result is
also found in other contexts (Balmforth 1999).

5.3. Cat’s eye phenomenology

To illustrate the nonlinear dynamics of an unstable jet we take γ = −1 and κ = λ = 0.
The evolution of the vorticity field and mode amplitude from the initial condition
(5.3) is shown in figure 4. The mode amplitude grows exponentially (with the linear
growth rate) until the instability saturates. Then |A(T )| begins to oscillate, or ‘bounce’,
aperiodically about the saturation level; these bounces are equivalent to the ‘trapping
oscillations’ of plasma theory. Simultaneously, the vorticity distribution inexorably
twists up into a cat’s eye pattern.

If κ = 0, and with the current initial condition, the system has the reflection
symmetry (x, Y ) → (−x,−Y ), ζ → −ζ and A → −A∗. Consequently, the vorticity
distribution evolves into a stationary cat’s eye pattern centred at Y = 0, as seen in
figure 4. In figure 5 we show another example with κ = 1/4. In this case, the symmetry
is lost and a propagating cat’s eye pattern emerges.

† If we return to the original variables, as described in Appendix B.4, and take c1i > 0, we find
c1 = [2 + c∗(1 − c∗)−1/2(logK + iπ)]β1{4c∗[−6 + (1 − 3c∗)(1 − c∗)−1/2(logK + iπ)]}−1, with K given
in (5.9), which is the formula derived by Lipps using Tollmein–Lin perturbation theory.
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Although there are similarities in the way that the vorticity distribution twists up
in figures 4 and 5, the amplitude reached by the mode is rather different. In fact, the
saturation value decreases rapidly with κ. We quantify this observation by recording
the amplitude of the first bounce in |A(T )| as a function of κ; see figure 6. These
measurements also allow one to estimate the saturation level, given the particular
value of κ suitable to a certain problem. For example, for the Bickley jet,

κ = −
[
6

√
1− c∗

3c∗ − 1
+ logK

]−1

, K(c∗) =
1 +
√

1− c∗
1−√1− c∗ . (5.9)

Note that κ = 0 for c∗ = 1/3 or β∗ = 2/3, which corresponds to the rightmost point
of the stability boundary in figure 1 (also, κ = 1/4 for β∗ ≈ 0.3 or −0.2). However,
the disappearance of κ is the only feature that distinguishes this point of marginal
stability in the single-wave model.

The examples above illustrate the nearly inviscid dynamics captured by the single-
wave model. More dissipative cases are shown in figure 7, and reveal an important
feature of the model: as the viscosity λ increases, the amplitude of the mode drifts
increasingly quickly from the initial saturation value and diverges. Further asymptotic
analysis (Churilov & Shukhman 1987; Goldstein & Hultgren 1988) indicates that the
mode amplitude eventually grows with dependence (λT )2/3 (see Appendix C). The
drift is associated with the viscous spreading of the vorticity within the critical layer
(Brown & Stewartson 1978) and reflects how the dissipative cat’s eye pattern is a
purely ephemeral structure.

For smaller viscosities and over shorter times, the mode saturates without significant
drift. The main dissipative effect in this regime is to attenuate the amplitude bounces
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(see figure 7). This eliminates any complex temporal dynamics associated with those
oscillations and drives the system to a quasi-steady, slowly spreading state. Further
details of such a state with κ = 0 are shown in figure 8. The condition of quasi-
steadiness requires that the total vorticity, q = ζ − Y , become a function of the
streamfunction, Ψ = Y 2/2 − ϕ, and symmetry demands that q = 0 within the cat’s
eye; this is illustrated in figure 8(a). Note also the ridge, or ring-like ‘defect’, in the
vorticity distribution (panels (b) and (c)), which is also associated with the relatively
large spread of (Ψ, q)-points near Ψ = −60, and reflects a residual, faster temporal
variation.

5.4. Amplitude bounces

The amplitude bounces begin when the core of the cat’s eye first overturns into
a vortex. The subsequent train of amplitude oscillations is intimately connected to
deformations of this vortex. The deformations appear to have some common features
with the vortex nutations seen in shear-layer computations (Miura & Sato 1978), but
there are also important differences. In particular, the vortex appears sporadically to
lose stability and generate non-axisymmetrical structure. For κ = 0, the bounces seem
largely due to the formation and subsequent decay of elliptical deformations such as
the ring-like vorticity defect in figure 8. For κ 6= 0 on the other hand, a secondary
vortical structure, or satellite, develops inside the cat’s eye (see figure 9), which has
some analogy with the ‘macro-particle’ phenomenology of plasma theory (Tennyson
et al. 1994).

As we lower the viscosity in the computations, the bounces become increas-
ingly prolonged. Moreover, in computations in which we attempted to minimize
the dissipation, the bounces appeared to continue indefinitely (see figure 10). These
computations consisted of a series of high-resolution runs with both the operator-
splitting scheme and a symplectic particle scheme (see Appendix A). Unfortunately,
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the code suffers from an intrinsic dissipation arising through the finite resolution in
Y , which becomes particularly severe as the vorticity distribution twists up. Thus,
as we lower the explicit viscosity, we ultimately enter a regime in which the intrin-
sic dissipation dominates the explicit one. Also, although the particle scheme does
not suffer from limited resolution, the fine spatial scales generated in the particle
distribution function eventually become smaller than the inter-particle separations.
Therefore, the particle scheme also breaks down because it fails to reproduce the
dynamics of the partial differential equation. Consequently, we cannot truly say
from the numerical results whether the amplitude bounces are a recurrent inviscid
phenomenon.

Amplitude bounces will not persist if the structures within the cat’s eye are continu-
ally sheared away as the vorticity distribution twists up (O’Neil et al. 1971). However,
such decay only proceeds if the sheared vorticity filaments are of sufficiently low
amplitude; stronger structures within the cat’s eye can resist the shearing process,
much as Landau damping halts in a plasma when the initial amplitude exceeds a
threshold (Manfredi 1997), or in vortices disturbed by sufficiently strong perturbations
(Balmforth et al. 2000). Moreover, shearing action may be irrelevant if the bounces
originate from sporadic secondary instabilities of the cat’s eye.

5.5. Numerical computations with the governing equations

To complement the asymptotic analysis we solve the original governing equa-
tions (2.2)–(2.3) numerically, as described in Appendix A. We initialize the com-
putation with a background jet in a domain whose size places the system just below
the upper stability boundary, and then add a low-amplitude perturbation with the
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form of the unstable mode. Results for β = 0 are shown in figures 11–13. Figure 11(a)
shows a snapshot of the vorticity field at a time after the mode has reached an initial
saturation level, ω∗, which is identified from a time series of the vorticity at a central
point of the jet (x = y = 0) – see figure 11(b). Figure 12 shows how ω∗ varies with k,
and confirms the trapping scaling followed by the equilibrated mode.†

More quantitatively, we convert the data of figure 12 into equivalent measure-
ments of (κ, |Ab|) using the scalings of Appendix B.4. Those measurements are
directly compared with the asymptotic theory in figure 6. Though the data from
the full numerical computations are strongly influenced by the viscosity, and are
taken at values of ε that are not that small, the saturation values are in rough
agreement.

The temporal dynamics of the unstable meander is also similar to the predictions
of the single-wave model: the vorticity time series in figure 11(b) and in figure 13

† The asymptotic theory predicts that the amplitude saturates at the level ε2, where ε2 = (β−β∗)2

or, equivalently, (2− k)2 if we fix β = 0 and instead vary k from its critical value. For a very viscous
jet, the amplitude saturates at the level, (2− k)1/2, which is often called ‘Hopf scaling’.
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Figure 11. Cat’s eye pattern formed from the growth of an unstable mode in a simulation of the
full jet with k = 1.8 and β = 0 (ν = 3.75×10−5). (a) A snapshot of the vorticity field; contour levels
are unequally spaced and chosen to highlight the cat’s eyes. (b) The time series of the vorticity at
(x, y) = (0, 0), together with ω∗, the amplitude of the first ‘bounce’.

show initial linear growth, subsequent saturation and the onset of amplitude bounces,
together with a viscous drift. Ultimately, the drift subsides and gives way to a
slower decay originating from the viscous damping of the jet profile itself. This last
stage of the evolution is not captured by the single-wave model, and is similar to
the final stages of the mixing-layer instability described by Goldstein & Hultgren
(1988).
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Computational limitations preclude a more demanding comparison of the numerical
simulations of the full equations with the single-wave model: even with 512 Fourier
modes in y, each critical layer has effectively only about 40 grid points. By contrast,
in solving the single-wave model, we place over a thousand grid points inside the
critical layer in order to resolve the twist-up of the vorticity field for as long as
possible. Even in a model of an unstable shear layer with only a single critical layer,
there would still be a factor of ten difference in resolution. In other words, with
moderate computational resources, the numerical simulations of the full equations
cannot adequately approach the critical-layer limit, a fact that we could have cited
as motivating the single-wave model at the outset. It remains to be seen whether a
numerical scheme with an adaptive, highly stretched mesh could perform better.

6. Asymmetrical jets
The expansion of the previous section highlights the special importance of inflec-

tional modes (the smooth, discrete eigensolutions that delineate the upper stability
boundary). However, these modes cannot be a generic feature of jets because the
levels for which U ′′ = β do not, in general, have the same mean flow speed. The
Bickley jet supports these modes because it has reflection symmetry about y = 0 and
therefore satisfies this condition automatically. However, the non-genericity of the
inflectional modes brings into question the usefulness of the analysis presented above.
To address this issue, we now consider what happens to these special neutral modes
when we break the symmetry of this particular profile.



102 N. J. Balmforth and C. Piccolo

(a) (b)

0

0.2

0.4

0.6

0 0.5 1.0 1.5 2.0
0

0.1

0.2

0.3

0 0.5 1.0 1.5 2.0

k k

cr ci

e = 0
e = 0.1
e = 1
e = 2
e = 3, 4 and 5

Figure 14. Plots of (a) cr and (b) ci against k for the sinuous modes of asymmetrical jets with
β = 0 and various values of ε. The symmetrical case is shown by the circles.

(a)

0

0.2

0.4

0.6

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3 –3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3

0

0.5

1.0

1.5

0

1

2

0

0.5

1.0

–2
–1
0
1

–20

20

0

0

4

8

–2

2

0

(b)

(c) (d )

(e) ( f )

(g) (h)

Real
Imag

U
(y

)

x

x

x

U
!
!
(y

)–
â

ψ̂

ψ̂

ψ̂

y y

Figure 15. Eigenfunctions of an asymmetrical, bounded jet. L = 5, β = 0 and ε = 1. Streamfunction
(left) and vorticity perturbations (right) for (a, b) k = 1.6, (c, d) k = 1.8 (e, f) k = 1.9. (g) The profile
itself, and (h) the mean, total vorticity gradient, U ′′ − β. The dashed lines show the position of the
critical layers as k limits to the stability boundary.

By way of example, we consider the flow with

U(y) = (1 + εy) sech2y (6.1)

and β = 0. A set of eigenvalues for different ε are displayed in figure 14. Even with
strong asymmetry, the eigenvalues appear much like those of the symmetrical jet and
disappear near k = 2. However, the limiting neutral eigenmodes cannot be smooth.
Indeed, a progression of eigenfunctions as k tends to the stability boundary is shown
in figure 15; the eigenfunctions develop sharp peaks as ci → 0, suggesting that the
limiting eigenfunctions are singular (see also Howard 1964).

To explore the dynamics of asymmetrical jets from an analytical perspective we
introduce a weak asymmetry into the basic profile and continue again down the route
outlined in Appendix B. This time we set

U = sech2y − c∗ + εf(y), (6.2)
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where f(y) is an antisymmetric function about y = 0. We then derive the system (see
Appendix B)

∂T ζe + Y ∂xζe + ϕx∂Y ζe − λ∂2
Y ζe = −γϕx − κϕT , (6.3)

∂T ζo + Y ∂xζo + ϕx∂Y ζo − λ∂2
Y ζo = σϕx, (6.4)

iAT = 〈e−ixζe〉, ϕ = Ae−ix + c.c., (6.5)

where σ is a measure of the asymmetry of the flow profile. Though the odd vorticity
component is now forced, the mode still couples only with the even component,
and the (A, ζe) subsystem is identical to the single-wave model. This signifies that
the asymmetrical distortion of the mean flow induces an antisymmetrical vorticity
component but does not change the modal dynamics. Also, when κ = 0, the two
evolution equations are identical up to scaling by −σ/γ. Hence, for these parameter
values, and initial conditions permitting, the two fields evolve in identical fashions.

The inviscid normal modes predicted by (6.3)–(6.5) are

ζe =
(κc1 − γ)ϕ
Y − c1

, ζo =
σϕ

Y − c1

. (6.6)

Moreover, the dispersion relation is unchanged from the symmetrical case. Notably,
when γ = 0, the flow is neutrally stable and we are positioned at a point on the upper
stability boundary. In this instance,

ζe = 0, ζo =
σϕ

Y
. (6.7)

Thus the neutral mode is singular, as suggested by the numerical results described
above.

With dissipation, the asymmetrical vorticity component of the normal mode satisfies

λζ ′′o + i(Y − c1)ζo = iσϕ. (6.8)

Hence,

ζo = iπσϕ

∫ ∞
0

exp(−λq3/3 + iq(y − c1)) dq, (6.9)

which indicates that the eigenfunctions become smooth with viscosity.
With A(0) = A0 and ζe(x, Y , 0) = ζo(x, Y , 0) = 0, the solution of the initial-value

problem is given by

A = A0e
ΓT , (6.10)

ζe =
iγA0

(πγ − πκY − iY )
(eΓT − e−iY T )eix + c.c. (6.11)

and

ζo = − iσ(1− iπκ)A0

(πγ − πκY − iY )
(eΓT − e−iY T )eix + c.c. (6.12)

For neutrally stable jets, Γ = 0, A = A0, ζe = 0 and

ζo = −2σ

Y
A0[cos x− cos(x− Y T )]. (6.13)

Although this solution is non-singular, there is a resonant response at the critical
level Y = 0, where the mode amplitude grows linearly with time. At some stage, the
solution must therefore break out of the linear regime and enter a nonlinear state.
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Figure 17. (a) Time series of the vorticity at (x, y) = (0, 0) and (x, y) = (π/k, 0) for the simulations
of figure 16(a). (b) The magnitude of the differences of these series and a slightly different definition
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The nonlinear solution satisfies the equation

∂T ζo + Y ∂xζo − 2∂Y ζo sin x = −2A0σ sin x, (6.14)

which can be solved by the method of characteristics (O’Neil 1965; Stewartson 1978),
and indicates that the vorticity distribution again twists up into a cat’s eye pattern.

Numerical results for asymmetrical jets in the full problem are shown in figures
16–18 (again we choose β = 0 for illustration). In figure 16, we show snapshots of
the vorticity field in runs with different asymmetry parameters (ε = 0.8 and 3). The
snapshot for ε = 0.8 shows mild asymmetries, but the vorticity field is strongly skewed
for ε = 3. So much so, in fact, that one cat’s eye structure completely dominates the
other and displaces it from the vorticity extremum. However, in both cases, the mode
amplitude evolves in much the same way as for the symmetrical jet: there are irregular
amplitude bounces and a slow viscous drift (see figure 17). The dependence of the
saturation level on k is also hardly changed by the skewing of the mean vorticity
(figure 18).

In summary, because the asymptotic theory builds on the single-wave model without
qualitatively modifying it, we conclude that the symmetry of the Bickley jet is not an
essential requirement to the dynamics we predict at the onset of instability.
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7. Summary

In this study we have explored weakly unstable, almost inviscid meanders of
two-dimensional jets on the beta-plane. We began with linear stability theory for the
Bickley jet, and outlined a weakly nonlinear theory for a particular mode of instability.
This ‘inflectional’ mode is a smooth, discrete eigenmode whose critical layers line up
with the extremal points of the mean, total vorticity. Finally, we considered slightly
asymmetrical jets in order to gauge how the dynamics changed when the neutral
inflectional modes were no longer smooth.

The weakly nonlinear theory for the unstable inflectional modes furnishes a reduced
model also derived in several other physical problems. Following the terminology of
plasma physics, we refer to this system as the single-wave model. In fact, part of
the purpose of the present work was to emphasize how the single-wave model is a
universal description of a transition to instability of this kind (a bifurcation of an
unstable mode from a continuous spectrum). Despite this significance of the single-
wave model, the system has received relatively little attention in the past. Furthermore,
aside from a limited number of studies in plasma physics (see Crawford 1995), there
have been no attempts to verify in detail the ‘trapping scaling’ on which the derivation
of the model rests (that is, to solve the governing equations in the parameter regime
of interest and compare with the dynamics predicted by the single-wave model).
Here, we have rectified these deficiencies: we have given a broad summary of the
dynamics captured by the model, ranging from the linear theory to the fully nonlinear
evolution, and we have observed the trapping scaling directly in simulations of the
two-dimensional fluid equations.

It is important to appreciate that trapping scaling predicts saturation levels which
are significantly smaller than one might expect based on standard bifurcation analysis.
One advantage of using the single-wave model is that it directly takes into account this
abnormally low saturation level. Furthermore, by focusing attention on the critical
layers, the model optimally places highest resolution in the regions where it is needed.

A notable feature of the dynamics predicted by the single-wave model is that
at the onset of instability, provided the dissipation is sufficiently small, the mode
amplitude appears to have temporally complex, perhaps chaotic, dynamics. This
arises as a result of ‘amplitude bounces’ (trapping oscillations) that can be attributed
to the sporadic creation and subsidence of secondary vortical structures within the
cat’s eyes. However, with limited computational resources, it is not possible to know
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whether this dynamics is persistent, or merely decays slowly with time; we have given
evidence to suggest that solutions are aperiodic, but the issue remains open.

If complex dynamics does persist, then the system provides an example in which
chaos appears immediately beyond the onset of instability. This contrasts with many
other, more familiar systems (like Rayleigh–Bénard convection) in which a sequence
of bifurcations is necessary before chaos ensues. At the heart of this feature of the
transition is the absence of significant dissipation. Indeed, once dissipation effectively
acts within the critical layer, the vorticity begins to spread and the mode amplitude
diverges, eventually breaking the trapping scaling.

The existence of temporal complexity is also relevant to Lagrangian transport
theories, which have recently acquired prominence in view of various geophysical ap-
plications. In order to develop analytically, those theories often assume an equilibrated
state in which the streamfunction is steady, and then artificially add a time-periodic
perturbation in order to break open the steady separatrices of the cat’s eye and allow
transport across the jet (Samelson 1992; del Castillo-Negrete & Morrison 1993). As
we see here, the unstable jet does not saturate in a steady meander, but the amplitude
fluctuates. This leads to the aperiodic opening of the separatrices bounding the cat’s
eyes and so transport occurs naturally without the addition of other waves or per-
turbations. In this situation, the degree of transport can be estimated using the ideas
of lobe dynamics (Rogerson et al. 1999). Moreover, because of its universality, the
single-wave model provides a setting in which these issues can be explored in some
generality (see also del Castillo-Negrete 2000).

Finally, we remark on the physical realizability of the single-wave model. A key
ingredient of the model is spatial periodicity; that is, the presence of a single wave.
This periodicity may be realizable in the circular geometries of experiments with
electrolyte solutions (Dolzhanskii et al. 1991), rotating annuli (Früh & Read 1999;
van de Konijnenberg et al. 1999; Solomon et al. 1993) or electron plasma columns
(Driscoll & Fine 1990). But in most other physical systems one cannot quantize the
system to eliminate a broad band of excited wavenumbers, as underlies the analysis
here. Instead, one must include more wavenumbers, and, in particular, the effect
of long spatial variations. This allows subharmonic instabilities, which lead to the
pairing and merging of neighbouring vortices (Flierl et al. 1987). One possible way to
extending the theory is to focus on long-wave instabilities, where the structure of the
cat’s eye and the envelope of the mode amplitude vary on a comparable spatial scale
(Balmforth & Young 1997). However, secondary instabilities with short wavelength
may also become important as in Rossby-wave critical layers (Haynes 1989).

We thank P. J. Morrison for helpful discussions, and M. Umurhan for help in
preparing the manuscript. N. J. B. acknowledges an equipment grant from the Nuffield
Foundation and a Faculty Research Grant from UCSC.

Appendix A. Numerical details
A.1. Vorticity equation

We solve the full two-dimensional vorticity equation using a pseudospectral scheme
(kindly provided by A. Provenzale) in which we retain N Fourier components in y and
N/3 in x. The periodic domain has size −L 6 y 6 L and −L/3 6 x 6 L/3, where
L ≈ 5 and is varied to control the minimum wavenumber. The flow is initialized with
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the vorticity field

ω(x, y, 0) =
dU

dy
+ A0 sech2 y(4− k2 − 6 sech2 y) sin kx, (A 1)

where U(y) = (1 + εy) sech2y, and the initial perturbation amplitude was set to
A0 = 2 × 10−4. This approximates a jet with a superposed, low-amplitude, unstable
mode.

The dissipation in the scheme arises from two sources. First, a dissipative term of
the form ν∇2ω is explicitly added to the equation. This dissipative term is responsible
for removing much of the power in the higher x-wavenumbers. We performed several
computational test runs with a variety of values for ν in order to ensure that the
results are not especially sensitive to this term. We find that a value of ν = 5× 10−6

is a convenient choice for N = 256 or 512. Second, there is a filter that prevents
power from accumulating at higher wavenumbers. This provides a second form of
dissipation that is chiefly responsible for cutting off the y-wavenumber spectrum
over intermediate wavenumbers in x. The source of power in this wavenumber range
comes from the action of shear tilting which cascades energy to smaller scales in y.
Though the filtering is somewhat artificial we expect typical contributions of these
wavenumbers to the overall dynamics to decay algebraically in time. We have also
run the code at different resolutions to gauge the importance of the filter; at the
parameter values we choose, the filter has a noticeable effect but the results are
not overly sensitive to the position of the filter. Hence, we do not view the artifical
truncation of the Fourier spectrum as being particularly serious.

A.2. Single-wave model

The single-wave model is solved as a partial differential equation by an operator
splitting scheme described by Cheng & Knorr (1976). We first rewrite the vorticity
equation in the form

qT + Y qx + ϕxqY = λ(qY Y + κ), (A 2)

where q = ζ + κϕ− γY − κY 2/2, and then split the integration of the equation into
three stages (two advection steps and a diffusion step; see Cheng & Knorr). The
integration begins from the initial condition, q(x, Y , 0) = 2κA(0) cos x− γY − κY 2/2,
with A(0) = 10−3. We use a variety of grid sizes: for the longer runs, we use 128 or
256 points in x and 1025 or 2049 points in Y , with a domain size of 30 for the cases
at larger κ and 40 for smaller κ. Less resolution was used for the shorter runs. A
maximum timestep of 2.5×10−5 was used. Some other details are given by Balmforth
et al. (2000).

Although the code runs stably when λ = 0, due to the generation of ever finer scales
in Y , the scheme ultimately breaks down because of its finite resolution. Thereafter,
the code runs with an artificial dissipation that is difficult to both quantify and
control. A comparison of runs with κ = 0 and different values for λ suggests that,
for a resolution in Y of 1024 in a domain of size 30–40, the scheme has an effective
viscous coefficient of 10−4. For κ = 1/4, the effective dissipation was somewhat less.

We also solve the single-wave model using a particle scheme, which has some
analogy to computing the characteristics of the partial differential equation. The
particle orbits are constructed using the equations of motion

ẋn = Yn, Ẏn = i(Aeixn − A∗e−ixn) (A 3)
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and

iȦ =
2L

N

N∑
n=1

[Zn(0)− Zn(T )]e−ixn , n = 1, 2, . . . , N, (A 4)

where N denotes the total number of particles, L is the size of the domain in
Y (typically 50 or 100) and Zn(T ) = κ(Aeixn + A∗e−ixn) − Yn − κY 2

n /2. The initial
condition is composed by placing particles on a uniform grid covering the domain
−L 6 Y 6 L and 0 6 x 6 2π. If κ = 0 we further exploit the symmetry of the
solution to consider only the particles with Yn(T = 0) > 0. The equations of motion
are solved using the symplectic scheme described by Cary & Doxas (1993).

Appendix B. Derivation of the amplitude equation
With the change of frame and rescalings given in § 4.1, the governing equations

become

εωT + (S2− c∗+ εf)ωx +J(ψ,ω) = ε3ν3(ωxx +ωyy) + (4S2−6S4−β∗ − εβ1)ψx + εfyyψx
(B 1)

and

ω = ψxx + ψyy, (B 2)

where S(y) = sech y.

B.1. Regular expansion

We begin with a regular perturbation expansion and introduce the asymptotic se-
quences (4.3) into (B 1), (B 2). At order ε2, we find the inviscid linear equations; by
our choice of basic state, the solution is the inflectional mode:

ψ2 = S2A(T )eikx + c.c., ω2 = (4− 6S2 − k2)S2[A(T )eikx + c.c.]. (B 3)

In the present frame of reference, the mode is approximately stationary and develops
slowly. The dependence of the solution on the long time scale, T , is yet to be
determined.

At the next order, we find

ψ3yy − 2(2− 3S2)ψ3

=

{[
(fyy − β1)− f(4− 6S 2 − k2)

S2 − c∗
]
AS2eikx − (4− 6S 2 − k2)

ik(S2 − c∗) ATS
2eikx + c.c.

}
.

(B 4)

This inhomogeneous equation will not in general have a bounded solution unless we
enforce a solvability condition, obtained on multiplying by e−ikxS2 and integrating over
the domain. Normally, this procedure immediately provides the evolution equation
for A(T ). However, for the current problem, there are difficulties associated with the
two critical levels because, near y = ±y∗,

ω3 ∼ 1

y − y∗ , ψ3y ∼ log(y − y∗). (B 5)

Thus we cannot apply the solvability condition.
The divergence of the vorticity near the critical levels represents a breakdown of

the asymptotic expansion. In particular, since ω2 ∼ 1 as y → ±y∗, the asymptotic
sequences become disordered for y ∓ y∗ ∼ O(ε). This indicates that the regular
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expansion scheme breaks down in thin layers surrounding each critical level. These
are the modal critical layers. Here, we must rescale the cross-stream coordinate in
order to resolve the layers and search for a different asymptotic solution. These
inner layers are treated in the next subsection, but first we formulate the solvability
condition taking them into account: we multiply (B 4) by e−ikxS2 and integrate over
the domain, omitting the small regions [−y∗ − δ,−y∗ + δ] and [y∗ − δ, y∗ + δ], with
δ � 1, surrounding each critical level. Then various integrations by parts lead to

S2
∗ [ψ̂3y]

−y∗+δ
−y∗−δ + S2

∗ [ψ̂3y]
y∗+δ
y∗−δ =

1

ik
I1AT + β1I2A, (B 6)

where the hat represents the projection onto the Fourier mode exp ikx,

I1 = 4(1− 3c∗)I2 − 8 (B 7)

and

I2 = 2 +
c∗√

1− c∗ log

(
1 +
√

1− c∗
1−√1− c∗

)
≡ 2 +

c∗√
1− c∗ logK(c∗). (B 8)

Equation (B 6) is almost the solvability condition we need to determine A(T ). The
complication is that it explicitly contains the limits of ψ̂3y as we enter the critical
layers, and these must be determined by matching to the inner solution.

B.2. Inner solution

We first concentrate on the critical layer surrounding y = y∗. Here we introduce
y = y∗ + εY and the sequences,

ω = ε2Z + · · · (B 9)

ψ = ε2Ψ2 + ε3Ψ3 + ε4 log ε Φ4 + ε4Ψ4 + · · · . (B 10)

The logarithmic terms in the expansion are standard and are needed to match certain
logarithmic terms appearing the outer solutions as y → ±y∗; see (B 5).

To the leading orders, the Poisson relation (2.3), becomes

Ψ2Y Y = Ψ3Y Y = Φ4Y Y = 0, Ψ4Y Y = Z −Ψ2xx. (B 11)

We write solutions for Ψ2 and Ψ3 that immediately match the leading-order inner
limit of the outer stream function:

Ψ2 = S2
∗ (Aeikx + c.c.), Ψ3 = Y U ′∗(Aeikx + c.c.), (B 12)

where the subscript ∗ indicates the value at y = y∗. A similar relation can be written
down for Φ4; this function is independent of Y . Lastly,

[Ψ4Y ]∆−∆ =

∫ ∆

−∆
Z(x, Y , T ) dY − 2∆Ψ2xx. (B 13)

When we insert the inner sequences into the vorticity equation (B 1) we find, to
lowest order,

ZT + (U ′∗Y + f∗)Zx +Ψ2xZY = ν3ZY Y + (U ′′′∗ Y − β1 + f′′∗ )Ψ2x. (B 14)

Provided Z remains bounded as Y → ±∞, we may write the far-field form:
ZU ′∗ ∼ U ′′′∗ Ψ2. It is convenient to subtract this constant far-field vorticity off the
inner vorticity variable and introduce a new, localized vorticity variable,

ζ+(x, Y , T ) = Z − U ′′′∗
U ′∗

Ψ2. (B 15)
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The + indicates that this variable belongs to the critical layer at y = +y∗. Then,

∂T ζ+ + f∗∂xζ+ +U ′∗Y ∂xζ+ +Ψ2x∂Y ζ+ = ν3∂
2
Y ζ+ − U ′′′∗

U ′∗
Ψ2T −

(
β1 − f′′∗ + f∗

U ′′′∗
U ′∗

)
Ψ2x.

(B 16)
Also,

[∂Y Ψ
(+)
4 ]∆−∆ =

∫ ∆

−∆
ζ+(x, Y , T ) dY + 2∆

(
U ′′′∗
U ′∗

+ k2

)
Ψ2, (B 17)

and we have added a + superscript to Ψ4 to remind ourselves of its origin.
In an entirely analogous manner, for y = −y∗ − εY and ω ∼ ε2(U ′′′∗ Ψ2/U

′∗ − ζ−),
we may write equations for the second critical layer:

∂T ζ− − f∗∂xζ− +U ′∗Y ∂xζ− −Ψ2x∂Y ζ− = ν3∂
2
Y ζ− +

U ′′′∗
U ′∗

Ψ2T +

(
β1 + f′′∗ − f∗U

′′′∗
U ′∗

)
Ψ2x

(B 18)
and

[∂Y Ψ
(−)
4 ]∆−∆ = −

∫ ∆

−∆
ζ−(x, Y , T ) dY + 2∆

(
U ′′′∗
U ′∗

+ k2

)
Ψ2, (B 19)

where we have exploited the symmetries of S2 and f(y). It is convenient to introduce
a shift of the x-coordinate in these equations: x → x + π/k. Then Ψ2 → −Ψ2, and
the vorticity equation is put in the form

∂T ζ− − f∗∂xζ− +U ′∗Y ∂xζ− +Ψ2x∂Y ζ− = ν3∂
2
Y ζ− − U ′′′∗

U ′∗
Ψ2T −

(
β1 + f′′∗ − f∗U

′′′∗
U ′∗

)
Ψ2x,

(B 20)

which differs from (B 16) only by the terms involving the asymmetrical perturbation, f.

B.3. Matching

Now we match the inner and outer solutions. The explicit choices of Ψ2, Ψ3 and Φ4 in
(B 12) ensure a match of the leading-order streamfunction. Likewise, it is not difficult
to show that the far-field forms of the critical-layer vorticities match with the inner
limits of the outer solution. The only part that requires some discussion is the match
of the streamwise velocity, ψy .

To match this velocity component, we write the inner limit of the outer solution:

ψy = ±ε2ψ2∗y + ε3

[
±ψ3∗y +

(y ∓ y∗)
ε

ψ2∗yy
]

+ · · · . (B 21)

The outer limit of the inner solution, on the other hand, is

Ψy ≡ ±1

ε
ΨY = ±ε2Ψ3Y ± ε3Ψ

(±)
4Y + · · · . (B 22)

By writing the outer coordinate y in terms of the inner coordinates Y , and defining
∆ = δ/ε, we may match these expressions term by term in an intermediate matching
region where ε� δ � 1 or 1� ∆� ε−1. The leading order is automatically satisfied,
and the order-ε3 terms provide the relation

[ψ3y]
y∗+δ
y∗−δ + 2∆ψ2yy = [∂Y Ψ

(+)
4 ]∆−∆ =

∫ ∆

−∆
ζ+dY + 2∆

(
U ′′′∗
U ′∗

+ k2

)
Ψ2, (B 23)

with an analogous expression for the jump across the other critical layer. On recalling
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the reflection of Y and the shift of x in the y = −y∗ critical layer, we arrive at

[ψ3y]
y∗+δ
y∗−δ + [ψ3y]

−y∗+δ
−y∗−δ =

∫ ∆

−∆
[ζ+(x, Y , T )− ζ−(x− π/k, Y , T )] dY . (B 24)

Note that, by matching the jump in ψy , we can avoid a discussion of the loga-
rithmic terms that formally complicate the expansion. However, we must interpret
the final relation in terms of principal values because ψ3y and the integral diverge
logarithmically in the relevant limits.

This expression is needed in our solvability condition, which we now write as

1

ik
I1AT + β1I2A =

kS2∗
2π

∫ ∞
−∞

∫ 2π/k

0

e−ikx[ζ+(x, Y , T ) + ζ−(x, Y , T )] dxdY , (B 25)

on letting ∆→∞.

B.4. Canonical form

We place the equations governing the mode dynamics into a canonical form by
introducing some rescalings and new parameters:

x′ = kx− kβ1

I2

I1

T , Y ′ =
Y − Y0±

α
, T ′ =

T

τ
, A′ =

A

a
eikβ1I2T/I1 , (B 26)

ϕ =
Ψ2

ac∗
, ζ ′± =

ζ±
b
, λ =

ν3τ

α2
, κ = 2c2

∗
U ′′′∗

I1(U ′∗)2
, (B 27)

γ =
aτ

b
c∗kβ1

[
1− I2U

′′′∗
I1U ′∗

]
, σ =

aτ

b
c∗k
(
f′′∗ − f∗U

′′′∗
U ′∗

)
, (B 28)

where

α =
1

kU ′∗τ
, a =

1

k2c∗U ′∗τ2
, b =

I1

2k2c2∗τ2
, Y0± =

1

U ′∗

[
β1I2

I1

∓ f∗
]
. (B 29)

The final relations provide choices for three of the four scaling variables, a, b, α and τ;
we have written the formulae with τ undefined. We may use that fourth variable to
scale one of γ, κ or σ to unity in absolute value (provided that parameter is non-zero).
For the numerical computations reported in the main text, we exploit this scaling to
set γ = −1.

On dropping the primes, we find the equations quoted in § 4.1.

Appendix C. Asymptotic limits
The single-wave model has the two parameters, λ and κ. In the special limits in

which one of these parameters becomes large, the model can be reduced to simpler
forms.

C.1. λ� 1

For λ� 1, the evolution is dominated by the viscosity. In this situation, the vorticity
diffuses rapidly throughout the critical region, resulting in a relatively wide cat’s eye
pattern and a strong mode amplitude. This is captured in the rescalings

Y = λ1/3Ỹ , A = λ2/3Ã, ζ = λ1/3ζ̃. (C 1)
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In terms of the new variables, the system becomes

λ−1/3ζ̃T + Ỹ ζ̃x + ϕ̃xζ̃Ỹ = ζ̃Ỹ Ỹ − γϕ̃x − κϕ̃T , (C 2)

iÃT = 〈e−ixζ̃〉, ϕ̃ = Ãe−ix + c.c. (C 3)

Thus, to leading order, the time derivative drops out of the vorticity equation and
the vorticity distribution evolves quasi-statically, which is permitted because of the
relatively strong dissipation.

C.2. κ� 1, λ 6= 0

For large κ, a similar simplification occurs. To see this, we first transform into a
moving frame by writing

x = X +
γ

κ
T , ∂T → ∂T − γ

κ
∂x, A = ÂeiγT/κ, (C 4)

and then set τ = T/κ2 and ζ = κ−1ζ̂. Thence,

κ−2ζ̂τ − κ−1γζ̂X + Y ζ̂X + ϕXζ̃Y = λζ̂Y Y − ϕ̃τ, (C 5)

−γÂ+ iκ−1ÂT = 〈e−iXζ̃〉, ϕ̃ = Âe−iX + c.c. (C 6)

To leading order, we once again find a quasi-steady critical layer. We also lose the
time derivative from the A-equation but this is not essential to the approximation
(the term, ϕ̃τ, remains on the right-hand of the vorticity equation). The key effect
here is that a strong κ slows down the evolution of the mode so much as to allow
viscosity to equilibrate the critical layer. Thus we once again enter the regime of large
dissipation.

C.3. Quasi-steady critical layers

We can capture both limits above by simply dropping the time derivative from the
vorticity equation. Then, in the original variables,

Y ζx + ϕxζY = λζY Y − γϕx − κϕT , (C 7)

iAT = 〈e−ixζ〉, ϕ = Ae−ix + c.c. (C 8)

Next, let A = −aeiΘ , g = ζ, ξ = x+Θ and Y = η
√

2a. Then,

ηgξ + gη sin ξ − λ̂gηη = [(γ + κΘT )a sin ξ − κaT cos ξ]
√

2/a, (C 9)

aΘT = −√2a〈ζ cos ξ〉ξ,η, aT = −√2a〈ζ sin ξ〉ξ,η, (C 10)

where λ̂ = λ/(2a)3/2. Thus,

g = [−(γ + κΘT )ag1(ξ, η; λ̂) + κaTg2(ξ, η; λ̂)]
√

1/2a, (C 11)

where g1(ξ, η; λ̂) and g2(ξ, η; λ̂) are functions defined by Churilov & Shukhman (1996)
that satisfy

ηg1ξ + g1η sin ξ − λ̂g1ηη = −2 sin ξ, ηg2ξ + g2η sin ξ − λ̂g2ηη = −2 cos ξ. (C 12)

Furthermore, in their notation,

〈g1 sin ξ〉ξ,η = Φ1(λ̂), 〈g1 cos ξ〉ξ,η = 0, 〈g2 sin ξ〉ξ,η = 0, 〈g2 cos ξ〉ξ,η = Φ2(λ̂),
(C 13)
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in which Φ1(λ̂) and Φ2(λ̂) are known (computed) functions. Therefore,

aΘT = −κaTΦ2[λ/(2a)
3/2], aT = (γ + κΘT )aΦ1[λ/(2a)

3/2], (C 14)

which can be rearranged into a first-order ordinary differential equation. These
equations are of finite dimension and predict that a ∼ t2/3 for unstable systems at
large times. Both features result from the relatively large viscosity, which breaks the
inviscid character of the system, and causes the critical layer to spread.
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